Counting Schur rings over cyclic groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Schur rings over symmetric groups II :

We determine the commutative Schur rings over S6 that contain the sum of all the transpositions in S6. There are eight such types (up to conjugacy), of which four have the set of all the transpositions as a principal set of the Schur ring. 2010 MSC: 20C05, 20F55

متن کامل

Automorphism Groups of Schur Rings

In 1993, Muzychuk [18] showed that the rational Schur rings over a cyclic group Zn are in one-to-one correspondence with sublattices of the divisor lattice of n, or equivalently, with sublattices of the lattice of subgroups of Zn. This can easily be extended to show that for any finite group G, sublattices of the lattice of characteristic subgroups of G give rise to rational Schur rings over G ...

متن کامل

Schur rings over a product of Galois rings

The recently developed theory of Schur rings over a finite cyclic group is generalized to Schur rings over a ring R being a product of Galois rings of coprime characteristics. It is proved that if the characteristic of R is odd, then as in the cyclic group case any pure Schur ring over R is the tensor product of a pure cyclotomic ring and Schur rings of rank 2 over non-fields. Moreover, it is s...

متن کامل

Cyclic codes over finite rings

It is well known that cyclic linear codes of length n over a (finite) field F can be characterized in terms of the factors of the polynomial x"-1 in F[x]. This paper investigates cyclic linear codes over arbitrary (not necessarily commutative) finite tings and proves the above characterization to be true for a large class of such codes over these rings. (~) 1997 Elsevier Science B.V. All rights...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2019

ISSN: 0925-9899,1572-9192

DOI: 10.1007/s10801-019-00870-1